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Abstract. Huctuatiolls in the test error are important in thelaming theory of finite-dimensional 
systems as they represent how well the test error matches the average test emr. By explicitly 
finding the variance of the test ermr due to randomness present in both the data set and dgonthm 
for a linear perceptron of dimension n. we are able to address such questions as the optimal 
test set size. Where exact results were not tractable, a good approximation is given to the 
variance. We find thaf the optimal lest set size possesses a phase transition between linearmd 
3 power-law scaling in the system size n. 

1. Introduction 

Learning from examples deals with the question of how to find a network which, after being 
trained on a number of input-output example pairs, i.e. instances of an .underlying mapping, 
is able to generalize well [I]. That is, how to find a network which, given a randomly 
selected input, accurately predicts the output corresponding ‘3 this input. Much theoretical 
analysis of networks has concentrated on calculating the rate at which the generalization error 
made by the network decays as the number of training examples increases [1,2]. Within 
the physics community, such calculations have typically been achieved using tools from 
statistical mechanics. for which a corresponding thermodynamic limit (n -+ 00) is taken [3]. 
In this thermodynamic limit, the generalization error is self-averaging, such that fluctuations 
induced, for example, by the assumed randomly drawn training sets, are neglected. The 
average case scenario is to be contrasted with other approaches such as the vc formalism 
[4] which inherently deals with finite variance distributions. The vc formalism deals with 
the worst-case scenario, i.e. how many examples are required to guarantee, with a certain 
probability, that the error that the network will make will not be greater than some specified 
amount. To some extent, the traditional average-case scenario considered in the statistical 
mechanics literature can be moved closer to this worst-case approach by calculating the 
variance of the error distribution in addition to the average error. 

Such results will enable us to address a question of much interest in the practical field of 
training neural networks. Namely, given a data set of a finite size, how are we to partition 
the data optimally into a set on which the network is to be trained, and a set on which the 
network performance is to be estimated. 

t E-mail address: D.Barber@ed.ae.uk 
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2. Learning from examples 

We consider the scenario in which the inputs are represented by n-dimensional real vectors, 
x E W", and the output is a real variable, y E 8. A data set C is a set of 1 input-output 
pairs, C = [ ( z p ,  y o ) ,  p = 1 . . . l ] .  The inputs X P  are assumed to be drawn independently 
and identically from a zero mean, unit covariance matrix Gaussian distribution. The outputs 
are y p  = yo(xP) + G P  for some teacher function yo(.), where U P  is additive noise. For 
the purpose of learning from examples, 1: is split into two disjoint sets, the training set, 
'P = [ (xu ,  y")  , U  = 1 _. . p ]  and the test set, M = { (+ ,  y " ) ,  p = 1,. . .in], where 
1 = p +mi. 

The aim is to find, using the information in 'P, a student function y(x) that matches as 
closely as possible the output of a randomly chosen input-output pair. That is, we search 
for student functions that generalize well. Clearly, the optimal student is identical to the 

' teacher, and we shall assume that this function is accessible to the student, i.e. that the 
learning problem is realizable [3]. 

In this paper, we deal with one of the simplest input-output mappings considered in the 
learning from examples literature, namely the linearperceptron [l], for which the output y 
is related to the input x by 

1 
y ( e )  = -w. x 

J;; 
where the weight vector, w E 3". The data set outputs are generated by a 'noisy' teacher, 
y o  = WO- x"/J;; + 6". where WO is the teacher vector, and the noise is drawn from a 
Gaussian distribution of mean zero, variance U', such that (do') = ~~6,,,. In addition, 
the spherical constraint is assumed on the teacher, namely that it lies on the hypersphere 
wo. wo = n. 

Student perceptrons that match the outputs of the training set well are found by 
minimizing the training energy 

P P 

(y(x")  - y0(x"))' = E,, = (G . xu - u " ) ~  
"=I "=I 

where, for convenience, we have defined G = (w -WO) /&. 
To prevent the student learning the noise in the training set we add a regularizing term, 

Aw2, to the training energy to form an energy function, E = E,, + Aw' [5 ,2] .  This extra 
weight decay term penalizes large weights and prevents overfitting, improving generalization 
performance. The gradient descent algorithm 'descends' the energy surface E by updating 
the student weight components at learning time t according to 

where F,(t) is white noise such that (Fi(t)Fj(t')) = 2TSjjS(t - t') and T is the effective 
temperature [3]. The equilibrium (t 00) distribution of students that this algorithm 
produces is a Gibbs distribution, 

1 P(wlP) = ~ e x p ( - E / T )  

where Z is a normalization constant. 

t A 0 index will refer to a mining inpuf and fi to a test input. 
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The test error, defined by 

measures how well a student performs on examples from the test set. Ideally, one would 
like to know the test or generalization function, i.e. the expected error that a student drawn 
from P(wlP) will make on a random test example, er(wllwo) = ( E ~ ~ ~ ~ ( w I M ,  u t o ) ) M t .  The 
generalization function averaged over P(wl7J) and all possible training sets P is termed 
the generalization error, ex. 

The test error forms an m sample estimate of the generalization function. According to 
the central limit theorem, the generalization function will be distributed in a Gaussian manner 
around the test function [6]. It is the central aim of this paper to calculate the variance of this 
distribution. The fluctuations due to random training sets for a particular student generated 
from the training set 7J are quantified by ((erert(wlM, wo) - ~ f ( w I I w ~ ) ) ~ ) ~  and the average 
fluctuation of students generated by the training set can be found by averaging this over 
P ( W , P )  = P(WIP)P(P) .  We then write the average fluctuation for a p-dimensional 
training set as# 

where (. . . ) M . ~ . P  denotes an average over the test set, post training student, and training 
set distributions, respectively. El' is the variance of the test error calculated for a single 
test example. If the vast majority of the data examples are assigned to the training set and 
very few to the test set, the confidence in how well the test error matches the generalization 
function will generally be small. Indeed, the test error in this c,ase would typically fluctuate 
wildly over different test sets, i.e. the variance, Cz would be relatively large. ~ Thus, we 
really want to use the data in a dual manner: to minimize the test error, yet remain confident 
that it will be representative of the generalization function. That is, given a data set of size 
I ,  we aim to know how many examples, m, should constitute the test set, assigning the 
other p = 1 - m examples to the training set. 

In order to address this, we form the generalization function upper bound 
e,b(mll) = eg(m) + sC(m), where 5 is a confidence parameter to be chosen. We view 
e,b(mll) as an average probabilistic upper bound on the generalization function of students 
trained on p examples and tested on m examples. In order to calculate the optimal scheme 
to satisfy the above dual requirement, we minimize e,b(mll) with respect to m~ to find the 
optimal test set size, m'. Tbis requires the calculation of the variance, E'. 

In the following section, we calculate the variance exactly for a restricted region of the 
space of parameters A,  T and U'. In section 4, we give results that hold for all parameter 
values, but are valid only for the large-n regime. Using these results, we present the optimal 
test set calculations in section 5, concluding with a summary and discussion of our work in 
section 6. 

' , 

3. Exact variances 

In the following two sections, we present briefly results of calculations that  are^ exact 
in the sense that they hold for all n. These results represent the continuation of work 

t Although ~r(wllw") is a function of the teacher, due to isotropy of the teacher space, the results of this paper 
depend only on the length of the teacher vector; which is fixed. To simplify the mlculation, however, we include 
later n teacher average which is implicit in the average over the data set. 
t An average over the noise is implicit in the average over the test and training sets. 
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presented elsewhere [7], in which the variance of the noise-free spherical linear perceptron 
was calculated under exhaustive learning?. 

The exact calculations, however, were performed by nof including a weight decay term 
in the energy E .  We defer presentation of results including weight decay until a later 
section, as these results rely on a large-n approximation. 

3.1. Gibbs leaming without weight decay (A = 0) 

Recently, the generalization error for the finite-n Gibbs learning algorithm, without weight 
decay, was given [8]. The calculation of the variance employs these results, and we present 
briefly the line of argument. 

The average of the test error, given by (2.1), over the noise distribution, test sets, and 
student distribution becomes, after straightforward Gaussian integrations, 

(%sl(wIM. wo))M,w = (G2), + 2 .  
By explicitly evaluating the first term of (3.1). we find 

(3.1) 

Here the covariance marrix is defined as 

(3.3) 

and e(.) = tr(.)/n, where tr(.) is the trace. The generalization error is found by taking an 
average of tr' A-' over the Gaussian inputs of the training set, which we denote by (. ..)I. 
A-' is disbibuted according to an inverse Wishart distribution, W-'(I, p )  [9, 81, where I is 
the identity matrix. In order that the average of the inverse is finitet, we require p > n S 1, 
and have the result, (t~'A-l)~ = n / ( p  - n - I), which gives 

n 
p - n - 1  (3.4) E; = ($T +U') + U 2 .  

For the variance, we rewrite (2.2) as 

P = (Eea(wlM, wo)2)M,,,p - (c(wIIwo)2)u,p (3.5) 

where, as before, rf(wI[wo) = (<m,r(wlM, w ' ) ) ~ .  After canying out the average over 
M ,  equation (3.5) gives 

2 ( ~ .  + z.u2c2 + u4)w,p . (3.6) 
A straightforward Gaussian average over P(w, P) gives 

+ 2u2)' + [tf A-'($T + u') + u']I' 

This can be explicitly evaluated for p > n + 3 by employing [9]  

(3.7) 

t In the exhaustive leaning scenario considered in 171, P(uIP) is given by the distribution that is uniform over 
those student weights that reproduce the trnining set exactly and that satisfy the constmint w . w = n. 
$ For p c n ,  there are unconstrained directions for the student, which lead to a divergent integrd in the average. 
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and 

(tr' A-')* = n2(p - 1) 
( p  - n ) ( p  - n - l ) ( p  - n - 3) ' (3.9) 

The full expression for El2 is somewhat cumbersome, but simplifies in the large-n limit to 

E ? = - (  1 2u2a+T )'+.(;) 
2 a - l  (3.10) 

where a = p / n  > 1. Thus both the generalization error and variance diverge for a-+ 1. As 
a increases beyond 1, E l 2  decreases to its asymptotic value 2u". 

3.2. Pseudo-inverse 

The pseudo-inverse algorithm is a limiting case of the general Gibbs algorithm in which the 
temperature and weight decay both tend to zero such that T l h  (< 1 [5, 21. The benefit from 
the point of view of the analysis here is that we are able to calculate exactly the variance 
for both p < n  and p>n,  rather than being restricted to essentially p > n  in section 3.1. 

The generalization error for the pseudo-inverse algorithm for p z n + 1 is given by 
employing the T = 0 limit of (3.4) [SI. Similarly, the results for the variance for p >n + 3 
can readily be obtained from (3.7) by setting T = 0. For p <n, the pseudo-inverse algorithm 
is given by w = Pw', where P i s  the projection onto the subspace spanned by the training 
inputs [I]. Thus P(wlP) is zero except for the single point, w = XT(XXT)-'Y, where 
Y? = (y' ,  . . . , y p )  and XT = (d, . . . , zp). This gives 

P 
n 

= 1 - - + u2 (1 + (U' B-').J 

where B = XXT/n. Comparing B with the n x n correlation matrix for p patterns, 
A = X T X / n  (cf equation (3.3)), we remark that B is also a correlation matrix, distributed 
identically to A, but with the roles of p and n reversed. The results from section 3.1 
concerning the averages of the correlation matrix can then be employed directly by 
interchanging p and n. For p < n  - 1 ,  we obtain 

P n - 1  
n n - p - 1  

Es = 1 - - + U 2  

in agreement with known results for n -+ CO, a, = p / n  = constant [5]t. 
A straightforward calculation of the variance for p < n - 3 leads to 

4n2Zl2 = C ~ [ ~ ( U ' B - ~ ) ~ + ( ( ~ I ' B - ~ ) ~ ) ~  +2(t1'B-']~+ I ]  

1 n 
n, + 2 

2u2 ((tr' B-')x + 1) + - (2 + n - p) 

The results in (3.8) and (3.9) can then be employed to find the variance explicitly. In 
figure 1, we plot the generalization error and El/& against a. We remark that the two 
curves are very similar, a result which we show in the next section is not coincidental. Note 
that both curves possess the characteristic divergence as the training set size p approaches 
the system size n. 

7 Note that in [5] the genedimtion error is calculated for uncorrupted test sets 
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0.2-1 
lo 2o zIi 3o 35 Figure 1. Pseudo-invnse algorithm, T = 0 and h = 0 

broken curve, generalization error; full curve, scaled standard 
deviation XI I&. The noise is c2 = 0.2, and n = 20. P 

4. Weight decay 

In this section we present results for the general Gibbs learning algorithm for arbitrary 
temperature, weight decay, and noise. We proceed to calculate the variance as before, but 
with the inclusion of a weight decay term. 

After carrying out the Gaussian integrations over the noise and test set inputs, the 
resulting generalization error and variance are necessarily of the same form as (3.1) and 
(3.6). respectively. The only difference is the distribution P(wl7J) which now includes a 
weight decay term. By continuing the Gaussian integrations required for the average over 
P(wlP), we obtain, 

= U’ + (4T +U’) (e M-’)= + A (A - U’) (d M-’), (4.1) 
where 

M = A + h l .  

Here A is the correlation matrix defined earlier in (3.3). The difficulty arises in the 
calculation of the averages of inverse powers of the matrix M. d M - ’  is termed the 
responsefunction, B, which can be shown to be self-averaging in the thermodynamic limit, 
with ((B - C)’), = O(l/n’), where G = (B), [lo]. Moreover, Sollich [lo] obtained the 
first-order corrections to the average of the finite-n response function. These results give 
explicitly that 

G =  ~ o + G l / n + O ( i / n ’ )  

where Go is the averaged response function in the thermodynamic limit, and has the value 

Go=-!-(l-ru-A+d-). 2A 

G I  is related to Go by the equation, GI  = Ci, (1 - AGO) / (1 + AG@’. Using these results, 
the first-order approximation to the average (h‘M-’), can readily be found. Similarly, 
(tr‘M-’), can be found by using (tr‘M-*), = - @ / a h )  (tr‘M-]),M. 

At this point, however, we note that for the linear perceptron under consideration, we 
can rewrite the equation for the variance as 

;El’ = E: + Var(G’),,F (4.2) 

where var(G2),.p is the variance of G . C over the distribution P ( w , P )  and G = 
(w - w O ) / f i  . By straightforward~Gaussian integration, one finds that this variance 
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is a function of the average of terms involving tr'M-', i = 1.. .4. Furthermore, the 
resulting expression is O ( l / n ) ,  such that any finite-size corrections to tr'M-' will be 
O(l/nz) corrections to C:. Whilst these corrections are straightforward to obtain, the 
resulting len,dy expressions do not merit inclusion here. To a very good approximation, 
therefore, the standard deviation of the test error scales linearly with the generalization error. 
Indeed, looking back at (3.10). we note that the large-n expansion of the variance satisfies 
XIz = 2 ~ :  +O(l/n).' 

EvalGting (4.1) and expanding for small A, T gives ++> 1 2 u Z a + T  orATf4u' - -- E - -  
9 - 2  a - 1  2 (i- 113 

where a! > 1 and T << A < 1 (a similar expansion holds for a! c I). We see here that 
a weight decay is advantageous in reducing the generalization error and hence also the 
variance. 

More general input 
distributions can be considered in which the inputs are in some way correlated (see, 
for example, [lo, 111). For the case in which the inputs are 'spatially' correlated, 
P(r) a exp(-zTT-'z/2), equation (4.2) still holds for the modified input distribution 
on replacing G with I"/'G. The variance of a single test example can then be well 
approximated as before by twice the square of the generalization error under the new input 
disuibution. 

So far we have considered an isotropic input distribution. 

5. Optimal test set sue 

Now that the variance has been calculated, we can proceed to establish the optimal test set 
size. 

A data set L, consisting of 1 elements, is split into the two disjoint subsets, P and 
M .  As before, P is the training set consisting of p examples, and M is the test set of m 
examples, such that L = P U M ,  and I = ' p  + m. Given a data set of I elements, we can 
then set p = 1 - m in the equations for the variance and generalization error, and let m 
vary between 1 and 1 - I. 

For small m, the standard deviation is relatively large and the generalization error is 
small, as the perceptron has been trained on a relatively large number of examples and 
tested on only a few. This situation reverses as m is increased. The resulting competition 
between the generalization error and standard deviation leads to the following definition: 

The probabilistic upper bound on the generalization function is defined by ~,b (ml l )  = 
eS + r C, where r is a confidence parameter. 

From the central limit theorem, the generalization function will be distributed in' a 
Gaussian manner around the test error [61. On average, the generalization function will 
be distributed similarly around the generalization error. Setting r = 1, we will be 84% 
confident that the generalization function will lie below ~ . ~ ( m l l ) .  Similarly, for z = 2, we 
will be 98% confident?. For convenience, we set r = 1 throughout. 

In figure 2, we plot the generalization error and upper bound function for two values of 
the weight decay for n = 100, I = 200, U' = 0.2 and T = 0. We note that the two graphs 

t Here we have quoted the percenlilge of the normal curve less than a certain number of standard deviations from 
the mean [61. 
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Flgure 2 Full curves, upper bounds for h = 0.01 (upper 
curve), and 0.05. The broken curve is the generalization error. 
The noise is c2 = 0.2, n = 1W. 1 = 200, T = 0. The global 
minimum in mch upper bound represents the optimal rest set 

m/n size. 

15. 

=2/3 
10 

5 
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Figure 3. Scaling law prefactors for the optimal test set size for a data set of size 1 = 0.6". o2 = 
0.8, and T = 0. 

are qualitatively similar, differing maximally for small m. This can be explained by using 
the approximation to the variance, and writing the upper bound as 

We see from figure 2 that the optimal test set size, m', for both weight decays ism' x 24$. If 
we then increase the system size, n, we find that m* scales like n2I3. Further observations 
lead to the conclusion that, in general, there exist two scaling laws for m'. One is the 
aforementioned 3 scaling, and the other is linear. These scaling phases occur due to the 
existence of two competing local minima in the upper bound function. $ scaling implies a 
relatively small test set compared with linear scaling. We would expect that, for small noise 
levels, or large weight decay, the optimal test set size, m*, would be minimal, and that as 
we increase the noise, m' grows. This conjecture is borne out in figure 3, where we plot the 
prefactors of the linear and $ scaling laws for I = 0.6n. U' = 0.8, T = 0. For A < 0.15, 
the scaling is linear (m' large), and the prefactor reduces quickly as A tends to 0.15. There 
is then a transition to 3 scaling (m* small) as A increases beyond this transition point. 
Initially, the ,prefactor for the f scaling is large, reducing as A increases. 

$ Equation (5.1) also holds for (spatially) correlated inputs on replacing 
for correlated inputs, fmm which the modified optimal test set size can be calculated accordingly. 

with the generalization mor calculated 
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1 Figure 4. Phase diagram for the pseudo-inverse algorithm. 
In each region. the optimal test set size scales either linearly 
with n, or like n2t3. 

In  general, isolating the phase boundaries involves the solution of a rather complicated 
expression and, as such, the boundary needs to be found numerically. For the pseudo-inverse 
algorithm, however, analytical expressions for the the large-n limit are readily found. In 
figure 4 we plot the phase diagram for the pseudo-inverse rule (n >> 1). The values of the 
prefactors in the regions (a), (b), and (c) are, respectively, 

where atOt = l/n. 
For large n, the variance is essentially zero, and the transition regions are simply given 

by  consideration^ of the generalization error. If this is a monotonically decreasing function 
of a, such phase transitions will not exist as the ‘optimal’ scheme in this sense is to simply 
take the smallest test set. For a large enough value of A, the generalization error will 
necessarily be monotonic, and we will have $ scaling. Thus, small test sets are reasonable 
for a large weight decay or small noise levels, in that the test error will be a good estimate 
of the generalization function. 

6. Summary and outlook 

We have calculated the variance in the test error of the linear perceptron due to randomness 
present in both the data set and algorithm. Where an exact calculation was not tractable, we 
showed that the variance can be very well approximated by a simple scaling of the square 
of the generalization error. We applied these results to address the question of the best 
assignment of a data set into a test and training set. We found that essentially there exist 
two different regions for the scaling of the optimal test set size with the system dimension: 
one linear, which operates for example for relatively large noise, and one $ scaling. That 
the variance is essentially trivial to approximate for the linear perceptron is undoubtably 
due to the simple mapping that it performs. Of future interest is the determination of the 
variance for nonlinear systems. 
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